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Abstract 

The article proposes a method for reconstruction inhomogeneity parameters based on the 
results of near-field measurements in medical diagnostics. This is a classical inverse problem 
arising in various fields of science and technology. At the first stage, the problem of wave 
propagation inside an object is considered. A rigorous description of the problem is given 
both as a boundary value problem and as a volume integral equation. Next, using the numeri-
cal solution of this equation, the field values outside the body in the near zone are deter-
mined. At the second stage, using the obtained near-field values using a two-step algorithm, a 
search for inhomogeneities occurs. A specially trained neural network filters the values ob-
tained before and after the two-step algorithm, thereby improving the quality of images visu-
alizing inhomogeneities. Graphic illustrations of the original and restored values of inhomo-
geneities for the objects under consideration are presented. An experiment was conducted 
demonstrating the features of restoring object parameters using neural networks. The results 
show the effectiveness of filtering the calculated data by the autoencoder. A software package 
for determining the parameters of inhomogeneities inside the object is proposed and imple-
mented.  

  
Keywords: numerical methods, integral equation, Helmholtz equation, inverse problem, 

neural network. 

 

1. Introduction 
Let us consider the problem of determining the structure of objects. Similar problems of-

ten arise when solving various technical problems of object control. Of particular interest are 
the tasks of medical diagnostics and non-destructive testing methods. When researching, it is 
necessary to rely on one principle, such as non-invasiveness. This means that the object un-
der consideration must maintain integrity during the research; it is impossible to penetrate 
and destroy the object under consideration. In cases where it comes to medical diagnostics, 
additional restrictions are imposed on the measurement methods used. These problems are 
often solved using electrodynamic or acoustic methods by exposing the object of measure-
ment to a radiation source. Such approaches are well studied and are essentially classical in 
acoustics and electrodynamics and are called “inverse problems of acoustics and electrody-
namics”. 

In acoustics or electrodynamics, the term “inverse problem” usually refers to problems re-
lated to the search for and identification of inhomogeneities in objects. Two main classes of 
these problems can be distinguished: time-dependent and time-independent problems. The 
first class of problems is effectively solved by using finite-difference methods. The second 
class is the most difficult, so it is usually solved by reducing the boundary value problem to 
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integral equations. In this paper, the emphasis is on problems that are not related to time. It 
is worth noting that most inverse problems are ill-posed and nonlinear, which makes the pro-
cess of solving them extremely difficult. Even small changes in the input data can significantly 
affect the results. Nonlinearity, in turn, adds difficulties to the solution. 

Initial attempts to solve inverse problems were tied to the development of simple iterative 
methods, which have their pros and cons. Among the advantages is the ability to work with 
incomplete data, while a crucial drawback is the necessity of finding a high-quality initial ap-
proximation. 

This paper proposes a numerical method for solving acoustic problems using neural net-
works, which is due to the need to find effective methods for filtering data. The importance of 
developing new methods can be demonstrated using the example of medical diagnostics, 
where, despite the existing modern diagnostic equipment, the issues of detection accuracy 
and procedure safety remain relevant. Effective mathematical algorithms can help solve these 
problems not only in medicine, but also in flaw detection.  

Multiple attempts to solve inverse diffraction problems on screens have been well studied 
in the works of domestic and foreign researchers [1-16]. 

2. Statement of the problem 

The propagation of sound waves in free space 2R  and their interaction with objects is a 
complex problem that is actively studied in acoustics. Imagine a two-dimensional object, such 

as an airplane wing or part of a building, located in free space. A sound wave 0U , approaches 
this object, for example, a loudspeaker, an airplane engine, or even a person. Our goal is to 
determine the complete sound field U  that occurs around and on the surface of this object, 
taking into account both the incident sound wave from the source and the reflected and scat-
tered waves from the object itself. This problem, determining the complete field from a 
known incident field, is called the forward problem of acoustics. Solving this problem is criti-
cal in many fields. In aeroacoustics, for example, understanding the interaction of sound 
waves with an airplane wing allows us to design quieter aircraft. In architectural acoustics, 
modeling sound propagation in a room helps optimize the acoustic performance of concert 
halls or recording studios by minimizing echo and reverberation. In medicine, acoustic mod-
eling is used to design and optimize ultrasound diagnostic devices. Even in the field of un-
derwater sonar, understanding how sound waves interact with underwater objects is key to 
detecting and identifying targets. Methods for solving direct acoustic problems vary and de-
pend on the complexity of the object and the frequency range of the sound waves. For simple 
geometric objects such as spheres or cylinders, analytical solutions based on diffraction and 
scattering theory can be used. However, for objects of complex shape, there are no analytical 
solutions, and numerical methods must be used. The choice of an appropriate method de-
pends on many factors, and the constant development of numerical methods and computing 
technology allows us to solve increasingly complex problems. 

 

 
Fig. 1. The problem of diffraction on a body. 



The behavior of the scattered field U  can be determined by solving the inhomogeneous 
Helmholtz equation: 

2 ( )u k u f x    (1) 

The function is piecewise continuous and is determined by the relation
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Here ( )k x  -defines the wave parameters inside the object, Q , 
0k  -is the wave parameter of 

free space. The right-hand side of equation (1) is given by a known function ( )f x with a com-

pact support. We require that the conjugation conditions be met at the interface between the 
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where    denotes a field jump. 

To ensure the uniqueness of the problem, we write the Sommerfeld radiation conditions: 
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Problem (1)-(3) is reduced to a linear inhomogeneous Lippmann-Schwinger integral equa-
tion using the second Green formula [3,8]: 

        0 2 2

0( ) , ,
Q

u x f x G x y k y k u y    (4) 

where  (1)

0 0( , )G x y H k x y    are the Hankel functions. 

The Lippmann–Schwinger integral equation is a powerful mathematical tool widely used 
to solve wave scattering problems in a variety of fields of physics. Its fundamental importance 
lies in the ability to reformulate the problem of wave interaction with an obstacle (or poten-
tial) from a differential equation, often difficult to solve analytically, into an integral equation. 
This integral equation takes into account the influence of the scattering object on the incident 
wave by means of an integral covering the entire interaction domain. This approach is espe-
cially useful when the geometry of the scattering object is complex or when the interaction 
potential is not a smooth function. In acoustics, for example, the Lippmann–Schwinger equa-
tion allows one to calculate the sound field scattered by an object of arbitrary shape under the 
influence of a sound wave. Here, the integral describes the sum of elementary spherical waves 
emitted by each point on the surface of the object in response to the incident wave. The am-
plitude and phase of these secondary sources are determined by both the incident field and 
the properties of the object's material, which affect the reflection and transmission coeffi-
cients. The resulting solution provides a complete description of the scattered field, including 
the amplitude, phase, and direction of propagation of scattered waves. A similar approach is 
applicable in electrodynamics, where the Lippmann-Schwinger equation is used to describe 
the scattering of electromagnetic waves by various objects, from microscopic particles to large 
antenna systems. In this case, the integral takes into account the contribution of each element 
of the scattering object to the resulting electromagnetic field. The solution allows one to pre-
dict the characteristics of the scattered radiation, such as the effective scattering cross-section 
(ESR), an important characteristic for radar and remote sensing technologies. 

The operator form of equation (4) is obtained after introducing the following notation 
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0: ( ), : ( )u u x F f x   then the equation takes the form: 

,Lu := u - Au := F  (6) 

where        2 2 2 2, , : .u L Q F L Q L L Q L Q    

We will search for solutions to equation (4) using the space  2L Q . 



Statement 1. 

The operator       2 2

0: ,
Q

Au G x y k y k u y   s Fredholm with zero index.. 

Lemma 1. 
[3] The solution to problem (1)-(3) is unique. 
Statement 2. 

The operator  2: :L I A L Q   is continuously invertible.. 

In works [2-7] numerical studies of the integral equation (4) were carried out. 
The use of identification approaches in diffraction problems in medical diagnostics is pos-

sible only with the use of non-invasive methods. Let us consider the issue of choosing obser-
vation points when examining an object. It should be noted that a poor choice of points can 
have a significant impact on the diagnostic results. Observation points should be located close 
enough to the object under study and, if possible, cover the body evenly from all sides. How-
ever, personal experience in studying the problem has shown that the radiation source should 
be slightly removed from the observation points to avoid the so-called sensor overexposure. 
We recommend removing the observation points by one or two integration step lengths. We 
will place these points evenly along the boundaries of the object under study at a small dis-
tance from each other in several layers. A wave propagating from a point source is used as in-
cident radiation. In such a formulation of the problem, it is possible to use a two-step algo-
rithm for identifying inhomogeneities. 

 

 
Fig. 2. Object, radiation source and observation points. 

 

Let's divide a flat object into cells  1 2, ,i i i i  . Let's introduce the assumption that the 

inhomogeneity parameters inside each cell do not change ( ) ik x k . Let's apply a two-step al-

gorithm. 

1) In the first step, using the field values   вu y  measured at the observation points вy , we 

calculate the current value  J y  by solving the following equation. 

       ,в в в
Q

u y f G x y xy J dx    (7) 

It should be noted that equation (7) is the most complex part of the two-step method, since 
it is an equation of the first kind. The system of linear algebraic equations obtained as a result 
of solving the integral equation (7) is ill-conditioned, which leads to highly noisy reconstruct-
ed data. 

2) In the second step, we recalculate the value of the inhomogeneity parameters ( )k y  using 

the value 
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The use of various regularization methods and matrix preconditioning algorithms in some 
cases reduces the condition number. These approaches work effectively until the matrix con-



dition number exceeds 1014. Therefore, these approaches are not universal. The paper also 
uses an approach based on the use of neural networks. 

3. Application of neural network approach to the filtering 
problem 

Consider the noise reduction problem for the two-step algorithm using neural networks. 

Noise reduction will be performed at the stage of restoration of values  J x . The problem can 

be defined: 
z = x + y  (9) 

z  - noisy data represented the sum  of true signal x  and some noise y . The essence of the 

basic methods is to approximate the x  using z .  
We choose a convolutional autoencoder as a model for solving the filtering problem and in-

troduce the function of recovery error (loss function) from the true and processed by the 
model data: 

      
2
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Autoencoder is a neural network, which designed to encode the input into a compressed 
representation and then decode it back such that the reconstructed input is similar as possi-
ble to the original data. During the dimensionality change, the data x  is compressed into 
some latent-space.  

     , 0,1
d

h f x Wx b h     (11) 

where   - is the activation function. 

The result of network computations is a multiple application of (11) with different parame-
ters. The first part of transformations changing the dimensionality of the input tensor to the 
dimensionality of the latent space is called encoder.  

Then a transformation is applied to it bringing it to its original dimensionality. 

 ' 'g W h b   (12) 

Noisy autoencoder is a stochastic extension of the classical autoencoder designed to recov-
er raw data from their noisy variants. Such models can be combined into complex architec-
tures, creating deep neural networks to solve more complex problems. 

Сonvolutional autoencoders utilize the described idea of autoencoders by replacing trans-
formations (11) with convolutional layers.  

The convolution operation is understood as the following matrix transformation: 

( )( )ij mn i m j n

m n

y w x b     (13) 

ijy - output data (feature map), 

mnw  - layer filter (trainable parameter) 

( )( )i m j nx  
 - input data, 

b  - bias. 
From a mathematical perspective, the convolution operation involves the sliding applica-

tion of a filter (kernel) to input data. At each step, the sum of the products of the kernel ele-
ments and the corresponding values of the local region of the input matrix is computed. The 
key parameters defining the nature of this process are the kernel size and the stride. The for-
mer specifies the processing window (e.g., 3×3 or 5×5), while the latter regulates the distance 
between adjacent filter positions, influencing the size and overlap of the extracted submatri-
ces. 

An important complement to convolutions in neural networks is the pooling operation. Its 
goal is to progressively reduce the spatial dimensionality of the data while preserving the 
most significant features. Unlike convolution, pooling does not use trainable parameters but 



instead aggregates information within local regions (e.g., selecting the maximum value in 
max-pooling). This enhances the model’s robustness to minor distortions in the input data. 
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In this case, the dimensions of the output matrix can be found as: 
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( _ , _ )pool height pool width  - pooling submatrix size 

Convolutional autoencoders demonstrate a significant advantage over classical autoencod-
ers when working with images due to their specialized architecture based on convolutional 
neural networks (CNNs). Unlike the fully connected layers of traditional autoencoders, con-
volutional layers operate on local regions of data, preserving the spatial structure of the image 
and uncovering hierarchical patterns (e.g., edges, textures, objects). This enables the model to 
efficiently capture the topological features of the input data matrix, minimize the number of 
trainable parameters through shared weights, and reduce the risk of overfitting. 

Thus, convolutional autoencoders are not only adapted for handling multidimensional 
structured data but also provide more meaningful compression of information, which is criti-
cally important for tasks such as image reconstruction and generation. 

An example of such a model is shown in Figure 3. 
 

 
Figure 3. Example of convolutional autoencoder architecture. 

 

In formulas  , , ', 'W B W B  are the model parameters that are optimal in terms of minimiz-

ing the recovery error, which can be achieved using different loss functions such as RMS error 
or cross-entropy. 

Thus, the model accumulates information about the distribution of the reconstructed data

 |recp x x  from the pair estimates of the training sample.  ,x x . 

Generating an example x  from the training dataset. 

Noising of the generated example x  from  |С x x x . 

Estimation of the probability distribution    | |rec decoderp x x p x h  

For the experiment, training and test datasets were created, containing 6,000 and 2,000 
examples, respectively. Each data instance was generated according to the following algo-
rithm: 

Structure Generation: The number, geometric shape, size, and physical parameters of in-
homogeneities were assigned stochastically based on the problem conditions. 

Noise Addition: Artificial noise with a uniform distribution was applied to the resulting 
matrix at three intensity levels—15%, 30%, and 50% of the original signal’s amplitude. 



The original and noise-modified data were saved in a format suitable for neural network 
processing and used during its training and validation stages. Visualizations of typical exam-
ples from the dataset (including variations with different noise levels) are shown in Figure 4. 

As an example, consider a problem with the following initial data (Figure 4). We solve the 
forward problem and calculate the field values at special observation points (Figure 5). 

 

 
Fig. 4 Wave value function of initial object. 

 

 
Fig. 5 Module of the solution of the integral equation (4). 

 
We add 40% white noise into the J  (рис. 6) and filter it using the autoencoder model (Fig. 

7). 
 

 
Fig. 6 Module of the solution of integral equation equation (4) without filtration. 

 



 
Fig. 7 Module of the solution of the integral equation equation (4) after the filtering proce-

dure. 
 

Next, the problem of restoring the body structure is solved by substituting the calculated J

into formula (8). As a result, the value of the wave function 2 2

0( )k y k  is restored. 

 

  
(a) (b) 

Figure 8. Modulus of the reconstructed values of the wave function: a - without filtering, b - 
with filtering. 

 
Figure 8 shows the solution of the inverse problem for the considered figure (Fig. 4). From 

Fig. 8 we can conclude that the recovery is significantly improved when using the neural net-
work model to filter the noisy data in the solution. The effectiveness of the model is especially 
noticeable when it is applied to high noise levels. 

4. Using different signal filtering methods 
In the previous experiment, the modulus of the difference between the original and noisy 

data is a large value. As the noise level decreases, the efficiency of gradient methods decreas-
es. To solve this problem, we will convert the input data to the frequency range using a two-
dimensional Fourier transform, where we will perform filtering. We will introduce a small er-
ror of about 0.1% into the measured data and apply the Fourier transform. The training pro-
cess of the neural network model is similar to that described above. We will approximate the 
noise level by the model after preprocessing using a two-dimensional Fourier transform. 

The direct two-dimensional Fourier transform is the function: 
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Inverse two-dimensional transformation: 
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After applying the transformation (17), the data values in the frequency range are not 
small, which makes it possible to effectively use gradient methods to filter the data. The fol-
lowing order of transformations for the input data is defined: the original vector is divided 
into a real and imaginary part. For each of the parts, the model is trained on the training 
sample. 

 

 
Fig. 9 Fourier transform of the real part 

 

 
Fig. 10 Fourier transform of the imaginary part 

 
At the stage of using the trained model, the inverse transformation (18) is applied. As a re-

sult of filtering, the noise level can be reduced by one order of magnitude. 
 

 
Fig. 11 Original (left), reconstructed (right) values of the real part. 

 



 
Fig. 12 Original (left), reconstructed (right) values of the imaginary part. 

 
Based on the Fourier transform, other methods not related to machine learning can be 

used. There are various algorithms, such as the recursive average algorithm, the exponentially 
weighted average algorithm, the five-point moving average algorithm. However, these algo-
rithms do not provide a sufficient result for the task. Filtering methods using the Fourier 
transform, based on the introduction of weight functions (Hanna, Hamming, Kaiser, ...) work 
more efficiently. 

An example of the restoration of a sinusoidal signal using the Fourier transform is shown 
in the graphs below (Fig. 13 – 14). 

 

  
Fig. 13 Original (left), noisy (right) signal. 

 

 
Fig. 14 Recovered signal. 

 
However, these methods are not effective for the problem under consideration. Therefore, 

it is proposed to use averaging algorithms based on the impact of two types of error. The first 
is white noise, the second is a system error and models the background impact on the input 
data. When working with a sample of 100 values, it is possible to effectively restore inhomo-
geneities at a system error level of about 1% and a white noise error of 0.01%. 

 



  
Fig. 15. Recovered values of the modulus of the solution of the integral equation (4). 

 
Figure 15 demonstrates good quality of restoration of the value of the solution module of 

equation (4). However, a minor deviation in the form of new non-existent inhomogeneities 
appears in the restored data. These inhomogeneities are called artifacts. They are easily re-
moved by conducting additional measurements at other frequencies. When developing medi-
cal diagnostic methods, the task is often to suspect a disease at an early stage, when the tumor 
does not exceed a certain size. The obtained results show that the algorithm copes with this 
problem. 

5. Conclusion 
The paper considers the problem of restoring the structure of an object. The problem un-

der consideration is of great interest in medical diagnostics. The paper proposes algorithms 
that allow restoring the structure of an object. The problem under consideration is ill-posed, 
so it is proposed to use various data filtering methods. The filtering algorithms are based on 
the use of neural networks. Convolutional autoencoder models were used for training. Visual-
ization of the obtained data helps to separate important information about the structure of 
objects from irrelevant information, including various artifacts. Graphical representation of 
the data allows us to assert that the algorithms proposed in the paper effectively restore the 
structure of an object at different levels of noise in the data. To obtain numerical results, a set 
of programs was implemented in C++. Data filtering and visualization were implemented in 
Python using the Pytorch and Matplotlib libraries. 
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